Skip to content

New Balance Pushes the Limits of Innovation with 3D Printing

Release Date: 12 May 2016
New Balance Custom Spike with 3D Printed Plate - On Figure

BOSTON, MA March 6, 2013 – Global athletic leader New Balance is proud to announce a significant advancement in the use of 3D printing to customize high performance products for athletes.   Utilizing a proprietary process, the brand is able to produce spike plates customized to the individual needs and desires of their elite athletes.   At the New Balance Games in January 2013, Team New Balance athlete, Jack Bolas, became the first ever track athlete to compete in customized, 3D printed plates.

New Balance has developed a proprietary process for utilizing a runner’s individual biomechanical data to create hyper-customized spike plates designed to improve performance.  The process requires race simulation biomechanical data which the New Balance Sports Research Lab collects using a force plate, in-shoe sensors and a motion capture system.   Advanced algorithms and software are then applied to translate this data into custom 3D printed spike designs.

For the production of the custom plates, New Balance uses selective laser sintering (SLS) to convert powder materials into solid cross-sections, layer by layer using a laser.  SLS printing enables the customization process by allowing for complex designs that could not be achieved through traditional manufacturing methods.  Additionally, SLS printing greatly accelerates the turnaround time from design to functional part.

“Utilizing our Team New Balance Athletes to develop the customization process was extremely helpful”, says Sean Murphy, New Balance’s Senior Manager of Innovation and Engineering.   “We are impressed with their precise ability to identify and speak to the differences in the custom options provided.  They are acutely aware of what is happening in their shoes”.

NB Athletes involved in the development of this process included: 2008 and 2012 US Olympic Athlete and current 1500m World Champion gold medalist Jenny Barringer Simpson, 2012 US Olympic Athlete Kim Conley, 2012 Great Britain Olympic Athlete Barbara Parker and 4 time All-American runner in the 800m, 1500m and the Mile Jack Bolas. These athletes provided key feedback in order to develop spike plates that spoke to each individual athlete’s personal preference, biomechanics and specific race needs.

In addition to printing semi-rigid parts like spike plates for track runners, New Balance is working on softer SLS printed components that mimic the cushioning properties of foam midsoles.  This initiative will be critical to bringing the customization process to a broader audience of athletes.   

“With 3D printing we are able to pursue performance customization at a new level to help our elite NB athletes and eventually all athletes. We believe this is the future of performance footwear and we are excited to bring this to consumers,” says New Balance President and CEO Robert DeMartini. “As the only major athletic brand to manufacture shoes in the U.S., we are proud to invest in American workers.    Developing our printing capabilities could ultimately help us further invest in the American worker by adding highly technical positions to our already skilled labor force in Massachusetts and Maine.” 

About New Balance

New Balance, headquartered in Boston, MA has the following mission: Demonstrating responsible leadership, we build global brands that athletes are proud to wear, associates are proud to create and communities are proud to host.  New Balance is currently the only athletic shoe company that manufactures footwear in the U.S. with 25% of our U.S. footwear shipments produced at five New England facilities. The company also operates a manufacturing facility in Flimby, U.K.  New Balance employs more than 4000 associates around the globe, and in 2012 reported worldwide sales of $2.4 billion. To learn more about how New Balance Makes Excellent Happen, please visit http://www.newbalance.com.

adding all to cart
False 0
File added to media cart.